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On a finite amplitude extension
of geometric acoustics in a
moving, inhomogeneous atmosphere

ABSTRACT

The theory of linear geometric acoustics as developed by Blokhintsev is extended
to the nonlinear acoustic regime, by applying the method of Riemann invariants to
the propagation of acoustically small pulses along ray paths in a moving, inhomogeneous,
thermoviscous medium. Blokhintsev’s derivation is reviewed in detail, and is used to define
an almost Galilean transformation of the nonlinear propagation equations from a quiescent
to a moving medium. The nonlinear convective and dissipative processes are assumed to
have a negligibly small effect on the ray paths. The differential equations of the ray paths
and the propagation of the pulses are presented, and specialized to the example of a
horizontally moving, gravitationally stratified atmosphere.

INTRODUCTION

The propagation of short acoustic pulses and
their wavefronts over long distances in the at-
mosphere has provoked considerable interest dur-
ing the past three decades or so, as evidenced by the
copious theoretical literature on the subject. In ad-
dition to serving as a vehicle for expositions on dif-
ferent aspects of wave propagation theory, much of
this published work treats atmospheric acoustic dis-
turbances arising from natural and man-made
sources: sonic booms from supersonic aircraft
flight, nuclear and chemical explosions, jet noise,
volcanic eruptions, storms, and other assorted
violent phenomena. For the most part, these studies
address problems of obtaining appropriate
mathematical descriptions of the propagation
process, of using such models to deduce the
physical, chemical, and dynamical properties of the
atmosphere, of predicting the effects of acoustic dis-
turbances on the atmosphere (or vice versa), and so
on. In this literature, a large variety of theoretical
techniques are employed, and these may be loosely
characterized as follows: (a) linear geometrical
acoustics (rays and ray tubes), (b) linear harmonic
wave theory (infrasound, acoustic-gravity waves,
frequency-dependent modal analyses, Fourier
methods), (¢) nonlinear, finite amplitude wave
theory, (d) weak-shock propagation theory, and (¢)
perturbation expansion methods. Representative
reviews and bibliographies can be found in Refs.1-5
and 34; this list is by no means exhaustive.

From the standpoint of calculations of the
long-range propagation of acoustic pulses in real at-
mospheres, the use of these techniques has so far
not proven entirely satisfactory. The linear theories
cannot account for the progressive alterations in the
shape of the pulses as they propagate, while the
significant application of the more complex non-
linear theories has generally been restricted to plane
or spherical wavefront propagation in uniform,
stationary atmospheres. During the past few years,
a fresh theoretical approach has emerged, which is
loosely referred to as nonlinear geometric acoustics,
and which appears to have overcome these draw-
backs. Its basic ideas are described succinctly by
Ostrovsky.6 In this paper, we present a simple
variant of this method, which we apply to the
problem of describing the propagation of acoustic
pulses in moving, inhomogeneous atmospheres.
Our idea is to use linear geometric acoustics to
determine the propagation of the wavefront
associated with the acoustic pulses, and then apply
finite amplitude methods to determine in detail how
the shape of the acoustic pulse changes as it is
carried along the associated ray tubes. In this con-
text, nonlinear effects appear as essential correc-
tions to the linear theory, in what is hoped to be a
proper manner.

This concept is not new, but our specific im-
plementation of it appears to be. Previous work
done along these lines has addressed the problem of




calculating the effects of moving, stratified at-
mospheres on the nonlinear propagation of sonic
boom pulses generated by aircraft in supersonic
flight. Friedman, Kane and Sigalla7 and Guiraud®
have developed comprehensive treatments, in which
the equations governing the propagation of the
pulses along rays are produced. In these cases the
rays are determined to be trajectories along which
the sonic boom shock front propagates, in various
approximate senses. Guiraud also outlines the
historical development of this approach, which
owes much to Whitham.? Hayes and Runyan9
assume propagation along ray tubes in the manner
of linear geometric acoustics, and then apply non-
linear corrections. Of these treatments, only
Guiraud has indicated (albeit cursorily) how dis-
sipative effects are to be included. Varley and
Cumberbatch!® discuss large amplitude shockless
acoustic pulses travelling in stratified media. Their
work is of interest for the useful insights it provides
in relation to our work.

The main advantage of the use of nonlinear
methods along the ray tubes is its relative simplicity,
which arises from assuming that the calculation of
the location of the wavefront (i.e., the ray tubes)
and the calculation of the nonlinear propagation
can be partially decoupled. (As Friedman et al.’
correctly point out, this is not completely correct,
particularly in situations where acoustic rays can
cross. Thus, the theory presented here is not strictly
applicable in such regions.) Also, if the ambient at-
mosphere varies smoothly enough that the ray tubes
do not have sharp bends, the nonlinear propagation
along the tubes can be calculated almost one-

dimensionally. This requires that the acoustic ray
radius of curvature be substantially larger than the
mean spatial thickness of the pulse, a condition that
is almost always satisfied by audible sound pulses in
the atmosphere.

The disadvantage of this approach is that com-
munication is not allowed between adjacent ray
tubes, and this introduces a distortion into the
propagation process. To minimize this drawback, at
least two conditions on the pulse and its wavefront
should be satisfied. First, the propagating
wavefront should be stable in the sense that it does
not change shape appreciably as the wave
propagates. This corresponds to the situation in op-

- tics in which a wave has attained the Fraunhofer

zone: all wave and wavefront irregularities have
then been diffracted out. Second, transverse diffu-
sion effects in the pulse should be negligible, or
almost so, since molecular transport processes do
not respect ray tube boundaries. Alternatively, one
could, instead, require that the net momentum
transfer due to diffusion across the ray tube walls
balance out to negligible proportions, which can be
guaranteed to some extent by requiring that the
tangential (i.e., transverse) gradients in the overall
pulse be small. It is evident from all these considera-
tions that we are here describing a pulsed wave that
is locally planar, as, e.g., a spherical wavefront of
large radius.

In this paper we shall first review some details
of linear geometric acoustics that are relevant to our
approach, then show how dissipative and nonlinear
effects are to be incorporated, and how the approx-
imations required to do so are made.

LINEAR ACOUSTICS

~ In this and the following section, we shall
derive the differential equations that determine the
acoustic rays and the propagation of acoustic dis-
turbances along these rays, in the linear approxima-
tion. We shall closely reproduce the essential details
of the treatment of Blokhintsev,!"12 which is ap-
parently the earliest work that rigorously develops
the linear acoustics of steady, but otherwise ar-
bitrarily varying, media. The actual ray equations
will be derived in a later section.

We begin with the standard equations13 for a
non-reacting, compressible, viscous, heat-

conducting fluid, which determine the flow of mass,
momentum, and entropy, respectively:

3
VvV pviv=0 , O

? 1 1 .
3:—+v-Vv+;Vp=g+l—)-va . (2)

and




B byoys= }r [(Ew) - v+ V- «vD] 3)

where v is the fluid velocity, g is the external body
force per unit mass (e.g., gravity), p, p, s, and T are
the density, pressure, specific entropy, and tem-
perature of the fluid, and @ is the viscosity stress
tensor !> defined (in Cartesian components) by

avi av; 2 vk vk
oij=17 5)-(74-8_){1_ 7 dij o + {6 TR 4

Here, «, , and { are the coefficients of heat conduc-
tion, shear and bulk viscosity, and the repeated-
index summation convention is understood, viz.,
vK/aXk =V V.

These equations are augmented by an as yet
unspecified equation of state that relates the ther-
modynamic variables for any given fluid. The
propriety of employing equilibrium thermodynamic
concepts in the specification of a dynamic situation
is discussed by Landau and Lifshitz. 14 Implicit in
this employment is the assumption that the fluid is
locally in reversible thermodynamic equilibrium,; it
is this approximation that allows the entropy of the
fluid to be specified as a definite state function, so
that Eq. (3) also describes the flow of energy in the
fluid. Thus, to the extent this assumption is valid,
we may replace differentials of s with those of other
thermodynamic variables, by making use of rela-
tions such as

Tés = de —%6p , 5)

where ¢ is the specific internal energy of the fluid,
and § is any relevant differential operator.

The key defining feature of a local acoustic dis-
turbance is that its magnitude is so small that it con-
tributes negligibly to the motion of the ambient
fluid, which it perturbs. Accordingly, we suppose
now that the fluid properties f can be regarded as
the sum of an ambient fg plus a local acoustic per-
turbation f;, where f is any of the fluid variables.
Then Eqgs. (1)-(4) are assumed to hold when f = fp,
and when f = fo + f|. Another way to regard this
situation is to consider the ambient fluid to be
stable, in the sense that its motion is independent of
whether a perturbation is present or not. (This
assumption is much more general than the

customary one in which the ambient fluid motion
and properties are assumed steady.) The equations
of motion for the ambient fluid are thus

o
30 T Yor Veotpov - vo=0, (6

im-{—v .VV +L = +l g 7
at TYo-Vvot owpe=g+ Svoo. (7)

and

859 | N o
3 T Yo Vso= oo [(G0w) - vo+ kTl , (8)

where @gis @ when v = v, and « is assumed to be es-
sentially independent of position. For steady (or
slowly varying) ambient fluids, the partial time
derivatives may be dropped, and when vg = 0
(quiescent ambient fluid), Eq.(7) becomes the
familiar condition of hydrostatic equilibrium, while
Eq. (8) reduces to one form of the diffusion equa-
tion of heat flow. _

At this point it is worth noting that the acoustic
assumption tacitly requires the ambient fluid to be
mechanically stable. (That is, the disturbance
should not trigger a major motion from a state of
unstable equilibrium.) This is certainly true of the
real atmosphere.3 The motions associated with
restoring the atmosphere to equilibrium after the
passage of a disturbance are Viisald-Brunt oscilla-
tions whose periods are much longer than those of
the acoustic perturbations we intend to consider,
and whose wavelengths are comparable to at-
mospheric scale heights (cf., e.g., Beer?). By analogy
from simple resonant systems we would not expect
these oscillations to be generated to any significant
magnitude by short acoustic pulses. It is interesting
to note that the problem of determining the am-
plitude of these oscillations from such acoustic
sources does not yet seem to have been adequately
treated in the literature.

Returning to our equations, the motion of the
fluid with the imposed acoustic perturbation is
given by Eqs. (1)-(4), withp = po + p1,p = po + p1,
and so on. After performing this substitution, we
make use of Egs. (6)~(8) to remove the terms involv-
ing the motion of the ambient fluid. The resultant



set of equations for the perturbation is much too
complicated to work with. To make this system
more tractable, we keep the remaining dominant
terms, i.e., those which are first order in the pertur-
bation variable, and discard all terms containing the
dissipative parameters. This implies that the pertur-
bation is propagated with negligible damping. The
result is then Blokhintsev’s system of linear equa-
tions of motion of the acoustic perturbation:

apl
F-’-vl . VP0+VO' \v/ 2}
+pV- v+t V- -v=0, )
v,y
w'fVo’VVl'f'Vl‘VVO
1 Py
¥ Up-Supn=0, (10
0 pg
and
aSl
F+vo-Vsl+vl-Vso=0. (11

By making use of a vector identity, we can put
Eq. (10) in a form which does not depend on the
coordinate system to be Cartesian:

av,

st—+(VXVO)XVI+(VXV1)XVO+V(V0'Vl)

1 P
+ - =0, 12
7o \4 41 p% Vpo (12)

These equations apply to a fluid in which there
exist ambient vortices and entropy gradients; there

is no restriction that the perturbation itself be
irrotational, or that the ambient fluid be free of dis-
sipative effects, thermal sources, or sinks.

The above equations must be augmented by a
thermodynamic equation of state, which provides
an additional relation between the acoustic
variables needed to make them complete. Let us
assume that the pressure is a function of the density
and entropy, p = p(p,s). For small perturbations
about the ambient values this may be expanded as

p=po+(E)0-00+(ED),6-50  13)

or

Ap = (2—5)5Ap + (%5‘,, As . (14)

Note that this relationship is sufficiently general
that it applies also to differentials of the variables.
Thus, e.g., we can have

vp= (—g%)sz + (gsﬂ)pvs : (15)

Hence, if the acoustic variables are regarded as in-
cremental changes on the ambient values, we can
identify p; with Ap, p| with Ap, s| with As, and ob-
tain an “equation of state” for the acoustic pertur-
bation in the form

p1=hos; + adp; , (16)

where hg = (3p/as), and a(z, = (3p/dp)s; agis the am-
bient adiabatic speed of sound. Equation (16) is
valid provided, as we have so far assumed, that dis-
sipative effects for the perturbation are negligible.
In a later section, this equation will be modified.

LINEAR GEOMETRIC ACOUSTICS

We now use Blokhintsev’s equations to
calculate how a wavefront carrying an acoustic
pulse propagates into a steadily moving ambient
medium. Since these equations are linear in the
acoustic variables, it is convenient to work with

sinusoidal waves, for which the wavefronts are sur-
faces of constant phase.

At first glance this approach appears to have
little to do with our pulses, but in fact it has much to
do with them. On one hand, the linearity of the



equations allows the pulses to be represented by
Fourier superpositions of high-frequency sinusoidal
waves, and so we would need only deal with a
representative monochromatic component. On the
other hand, the pulses are more realistically
represented by a moving surface of discontinuity in
the acoustic quantities, on the forward side of which
the ambient fluid is undisturbed. Now, this latter
method of representation was developed very fully
by Kline'’ and Kline and Kay!® for electromagnetic
disturbances, and consequently employed by
Heller!” in the hydrodynamic case. Heller's equa-
tions for the surface of discontinuity proved iden-
tical to the equation for the wave surface obtained
in the sinusoidal case. Kline,!> Kline and Kay,"’
and Whitham'® indicate that, in the limit of high
frequencies, either approach produces equivalent
results; Whitham shows that the equations for the
surfaces and the associated amplitudes obtained by
each method are formally identical.

We therefore assume that the acoustic vari-
ables in Blokhintsev’s equations each take the form
Aei@t-X0) where the amplitude A depends on both
the coordinates and the time, w and k are the
reference constant frequency and wave number, and
the desired surfaces of constant phase are, at any
given time, described by § = constant. Since the am-
bient fluid is assumed steady, @ is evidently a func-
tion only of the coordinates. The temporal progres-
sion of any given surface of constant phase is
described by wt - k# = constant. We thus replace p,
by pjei“t -9, and so on, carry out the indicated dif-
ferentiation, and factor out the common exponen-
tial. This procedure is formally equivalent to replac-
ing the operators ¥ and a/at in Egs. (9), (11), and
(12) by (v -ikV8) and (3/at + iw), respectively,
and interpreting p,, py, etc., as sinusoidal ampli-
tudes. The result, after some rearranging of terms, is

3p1
5 tYor Vpit+vi-Wootpov: Vi

+ 01V - vo= -ik(goi-pev1 * VO) , (17)

av)
ST+(VXVQ)XV1+(VXV1)XV0
‘o 41 mv
(vo - v pOVpl-;% Po

. P1
=-ik(qri-5-V9) ,  (18)

and

asy
5t‘+ Vo' Vs + vy Uso= -ikgs) . (19)

In the process, we have defined a frequently occur-
ring quantity by

q=qo-vo- Vb (20)

where qo = w/k is a reference constant velocity, and
in obtaining Eq. (18) from Eq. (12) we used the
identity for the vector triple cross product. Next, we
further condense the notation by representing the
expressions on the left side in Egs. (17), (18), and
(19) by -F, -G, and -H, respectively. Then

qp1~pdV1'V0=qi%F , 2D

qu‘f:_(;'W'—'%;ﬁ. (22)
and

qs1 = %;E (23)

are the corresponding results. And, from Eq. (16),
we know that

1
p1=—3(p1-hosy) . (24)
ap

As indicated by Whitham,'” we can now ex-
press the acoustic amplitudes as an asymptotic
series in powers of 1/iw. Thus, we write each of the
acoustic variables in the form f; = Z;, gm(iw)™,
where f} is py, v), and sy, and the coefficients gy, of
various orders are correspondingly #m, ¢m, and op.
Since F, G, and H are each linear in the amplitudes,
we also have the expansions where the f are these,
also, and the corresponding gy, are Fp,, Gy, and Hpy,.
These expressions are now inserted into
Eqs. (21)-(23), and coefficients of like powers of iw
equated. The result is the following set of recursive
relations between successive orders of approxima-
tion:



g,(rm- hoom) -podm - V8= qoFm_1 ,  (25)
0
Tm
q¢m-;0—‘70 = qoGm-1 » (26)
and
qom = qoHm-1 - 2n

Form = O the right-hand quantities are zero,
and we obtain, for the dominant first approxima-
tion, the equations

qmo
—5 - pobo * V8 =0 (28)
ag
and
0
Q¢0—-EV0 =0. (29)

Note that this is the same result that would have
been obtained from Egs. (21)-(24) in the limit of in-
finite frequency. It is evident that the propagation in
this approximation is isentropic: oy = 0, and
p; = wg/a3. It is also longitudinal in the sense that
from Eq.(29), the acoustic perturbation fluid
velocity is in the same direction as the wavefront
normal, whose direction is given by V 8. Eliminat-
ing V0 from these equations gives the familiar
small-amplitude relation of linear acoustics:

7o = Podgdo (30)

On the other hand, the elimination of ¢¢ yields what
is generally referred to as the eikonal equation of
linear geometric acoustics:

2
(Vo) = 2—0) , 31)

or, from Eq. (20),

Wo)2 = ig(% —vo- V)2 32)

This is the differential equation for the surfaces of

constant phase, which will be used later to obtain
the equations for the acoustic rays.

An analogous equation was obtained by
Heller!” on the basis of moving surfaces of discon-
tinuity; in his result, the velocity vgin Eq. (32) is the
total material velocity including the perturbation,
i.e., vg + v;. This is a physically more accurate
procedure; Heller, however, did not obtain the dis-
continuity amplitudes.

Having obtained expressions for V8, we now
seek to obtain the leading acoustic amplitudes,
which are embedded in Fy, Gy, and Hy. On combin-
ing Eqgs. (25) and (27), we get

QT

—5 =P VI =qg (Fm—l +gHm-l>- (33)
a0

302

It turns out that, because of Eq. (31), the linear
systemn of Eqs. (26) and (33) has a vanishing deter-
minant; this, indeed, is the same determinant for
Eqs. (28) and (29). To handle this situation, we take
the scalar product of Eq. (26) with V4, and make
use of Eq. (31), to obtain

quz
@y - VO-—=qoGp - VO . (34)
Po3y

If we multiply Eq. (33) by q and Eq. (34) by pg, we
obtain, as one would expect, a pair of equations
whose left-hand sides are identical, apart from a
negative sign. From this we obtain the following
combination of the factors of the right-hand sides:

qu+Sa-2h9Hm+pon $V6=0 . (35)
0

For m = 0, this is Blokhintsev’s result.

By virtue of the way Fy, Gy, and Hy were
defined, Eq. (35) is a linear, first order differential
equation for the propagation of the acoustic am-
plitudes. This is not immediately apparent,
however. To reduce Eq. (35) to an expression in just
one of the acoustic variables, a considerable amount
of vector and scalar algebra is involved, and we
shall indicate only certain steps. We make use of all
the leading approximation results (Egs. (28)-(32)),
as well as Eqgs. (15) and (20), and the isentropic con-
dition. At the same time, we use the fact that we are



dealing with a steady fluid, so that no partial time
derivatives of the ambient variables are needed.
From Eq. (29) which relates ¢y and V8, Eq. (35) is
put in the form (m = 0)

F0+P—QH0 +—G0 $0=0 (36)
a

0

By their definitions, and using the fact that o = 0,
we have

3 LA T 1"0
-Fo=7y al VorViTo a3

+¢0° Voot poV - ¢o+ V vo, (37)

~Ho=¢0 " Vso , (38)
and also

3o
~Go - $0=¢0" 5 +-' 0 - Vo

- —2—7 $0-Vpo+Q, (39
P20

where

Q=¢¢" (VXvgXedot o (VX Xvp

+ ¢0 V(vo- ¢0) . (40)

These items are inserted into Eq. (36). We then pro-
ceed to eliminate ¢, by using Eq. (29) and by not-
ing that, from Eqgs. (29) and (30), ¢y = (xp/ppap)i
where B =V8/| V0| is the unit normal to the
wavefront surface in the direction of travel. We
eliminate the combination v, - V8 by making liberal
use of Eq. (20).

The result, after collecting terms, is the follow-
ing remarkable equation in =:

1
+ 5 vi-ve vin (poaadlmy=0, (1)

where we have defined

vs=vg+agh . (42)

Except for 8, the quantity in the brackets is solely a
function of the properties of the ambient fluid. This
is essentially Blokhintsev's main result, apart from
what are apparently typographical misplacements
of factors of 2 in both of his publications.!!"!? It is
evident that v is the velocity of propagation of the
acoustic disturbance, represented by the amplitude
0.

It now remains to demonstrate that v is also
the velocity (speed and direction) with which the
wavefront surface actually moves. Recall that the
surfaces of constant phase are given by the function
® = wt - k# = constant. If the assertion is true, then
this function should satisfy the propagation con-
dition

¥+VS°V<I>=O. (43)
On substituting for ¢, we obtain w - kv, - V& = 0,
orvg - V@ = qp. With the use of Egs. (20), (31), and
(42), a little algebra shows this last relation is iden-
tically true, and so, therefore, is the assertion.

It is not usually appreciated that Blokhintsev’s
result, in common with most linear, small-
amplitude acoustic theories, is also true for short
disturbances of arbitrary profile, even though the
ambient medium is moving and inhomogeneous. To
see this, let us represent one such disturbance as a
Fourier synthesis over a suitably high frequency
domain, namely

P =fﬂ'oe”’dw , (44)

where ® is as given above, and we now identify mg as
the spectral amplitude. On taking space and time
derivatives in Eq. (44), we find that

aPl
VP = *V7g

+ iro(—§+ v, - vq>)] étdo . (45)

From Eq.(43) the imaginary terms in Eq. (45)
vanish. This means that if Eq. (41) is multiplied by



¢'® and then integrated over w, the following

generalization of Blokhintsev’s equation obtains:

ap1
e + v5 - Vpi1

1
+—2— [V vs—vs- V:ln(poqa(z))] p1=0, (46)

where p1 is the actual disturbance function, not the
amplitude. In a similar manner, all the previous
developments hold for disturbances of arbitrary
profile. In particular, the small amplitude relations
given by Egs. (28)-(30) now take the forms

P1 = poagv1 = a3py 47
and
PI P1 .
vl—Fo-q 0—ml‘l s (48)

and these give the other acoustic variables.
The total kinetic energy of the ambient fluid
carrying this disturbance is

1
T= E(po + p)(vo+ v1)?

1
=To+ o+ pvo- V1+‘2-(povf+ pvd),  (49)

where terms of order higher than the second in the
acoustic variables have been dropped, and where T
is the ambient kinetic energy in the absence of the
perturbation. We identify the kinetic energy of the
acoustic disturbance with the time-averaged value
of T - Tg; for each spectral component, this is

1, %0
(T-To = '2’90¢0 + 7 0 Yo , (50)
0

which, on making use of Egs. (20), (29), and (30),
becomes

2

w0 jdo 1 .
_T = — oy — . 51
(T-To) p‘—zo[q Z:I (51)

For a motionless ambient fluid q = qo, and we
regain the familiar result for linear acoustics.

The mean internal energy associated with the
perturbation, however, is a considerably more com-
plex and delicate matter; this is discussed by
Morfey, 19 and in other references quoted by him, in
the context of general acoustic energy flows.
Blokhintsev,!? from considerations of thermo-
dynamic perturbation expansions, obtains

2
0

= s 52
{e1) m (52)

which is also a well-known classical result.!320
Equations (51) and (52) then yield

(B = —Tﬂ%q" (53)
poa

On summing this result over the frequency range,
we obtain the total acoustic energy carried by the
disturbance as

2
P1qo0

E= J- (Bldw=— . (54)
P24

From Eq. (20), we find that

Q_ ¥

q  a’ (53)
where v;, is the projection of vg along the wavefront
normal 7.

It is this last term that distinguishes
Blokhintsev’s results from those obtained in the
standard case of a motionless ambient fluid. Quite
simply, it is due to the fact that the propagating
wavefront moves faster or slower according as the
flow is with or against the direction of its motion
perpendicular to its¢lf. In anticipation of the subse-
quent discussion on ray tubes, consider a segment of
area Agi embedded in the wavefront or phase sur-
face. During the propagation, the segment will
sweep out a volume (Agh) * vs = Ag(ag + vp) per
unit time. If the medium were motionless, this
volume would be Apag Blokhintsev’s factor in
Eq. (55) is just the ratio of these two volumes. If we
regard these swept-out volumes as segments of ray
tubes, then the ray tubes will be seen to expand or
contract along their length relative to the motionless
ambient case, much like a pleatless concertina.
Some authors (e.g., LighthillS) interpret Eq. (55) as
a Doppler shift factor.



Now, suppose we muitiply each term in
Eq. (46) by 2p |q0/poqa(2) and collect terms. Since q
and the ambient quantities have no time depen-
dence, the result is easily reduced to

aE

wTVve (Evg) =0 . (56)

This is the energy conservation equation of linear
geometric acoustics. To the extent that E does in-
deed represent the energy content of the distur-
bance, Ev; is the acoustic energy flux, and is directed
along v, This says that the energy of the disturbance
is propagated in the direction v; = vo + agfi.

These are also the results of the work of
Ryshov and Shefter,?! who obtain equations for-
mally identical to those of Blokhintsev in terms of
the acoustic variables, rather than their spectral am-
plitudes. Ryshov and Shefter apply the fluid equa-
tions for instantaneous conservation of energy
directly to a wavefront carrying a narrow pulse, but
for which the small amplitude acoustic relations and
correct equations of the acoustic ray paths are

known a priori. Landau and Lifshitz?? also indicate
this equivalence for the case of sound energy flux in
otherwise motionless ambient media.

Hayes23 shows that the results of Guiraud,’
Blokhintsev,!!'? and Ryshov and Shefter?! are
special cases of a more general formulation of linear
acoustic energy propagation in unsteady media, in
terms of conservation of adiabatic invariants. It is
interesting to note that Hayes also implicitly
assumes that these conservation results are ap-
plicable to the details of the pulse shape.

We conclude this section with a remark on
acoustic perturbation shapes. The intrinsic acoustic
perturbation velocity v is along the wavefront nor-
mal 1, but is not necessarily along the direction of
energy flow, v Thus, the phase surfaces will have a
tangential component of motion. What this means
for the appearance of the acoustic perturbation is
that in the direction of actual propagation, i.e.,
along v, the spatial profile of the perturbation will
appear “‘stretched’ relative to that seen “normally,”
i.e., along B. This is because v crosses the surfaces
of constant phase at an inclination that is other than
perpendicular.

ACOUSTIC RAYS AND RAY TUBE PROPAGATION

In this section we shall determine the differen-
tial equations which characterize the paths taken by
different points on the wavefront, i.e., the acoustic
rays, and then apply these and Blokhintsev’s results
to obtain the equations of propagation along ray
tubes.

Acoustic ray tracing has been a perennially
popular topic since Raylt:igh24 determined the
correct equation for the alignment of an acoustic
wavefront in a vertically stratified, temperature-
and wind-loaded atmosphere. Milne?® was appar-
ently the first to obtain the ray equations for the
propagation of an acoustic wavefront in arbitrary,
steadily moving atmospheres. His approach was
based on applying Huygens’ principle to determine
successive positions of the front; locally, this front
moved with a velocity composed of the local sound
speed perpendicular to itself, and the ambient wind
velocity. He also derived the differential equation
for this surface; his resultant velocity and the dif-
ferential equation are identical to v and the eikonal
equation for V0 derived in the previous section.

The subsequent literature on acoustic ray tracing
has since provided variants on Milne’s equations
and the way they are derived. Engelke?® reviews
some of this work, as well as those papers which ex-
tend ray tracing to motion in unsteady ambient
fluids. Thompson,27 who obtains the eikonal and
ray equations from the theory of characteristics,
gives useful references.

To obtain the equations for the acoustic rays
from the eikonal Eq. (32), we could take them di-
rectly from Milne,?* since his equations for the
phase surface are equivalent to Eq. (32). Whitham?
has indicated a more direct procedure from the
theory of partial differential equations, which we
will employ instead. From a first-order partial dif-
ferential equation satisfied by a function f, and
which takes the form

H(f, X, ;i-)= 0, 57

the following set of 2n+1 ordinary differential
equations is obtained:



dpi 3H aH

ax = PidEf " ax; (58)

dxj aH

a’x = sﬁ' [y (59)
and

df __ aH

-(ﬁ— pla ’ (60)

where the x; are the independent variables, p; =
af /ox;, A is an arbitrary parameter, and the index i
runs from 1 to n. Equations (58) and (59) determine
a parametric curve xj(A), along which Eq. (60) can
be integrated to obtain f.

We express the eikonal Eq. (32) in the form
given by Eq. (57), by letting x; be the Cartesian
coordinate and f be the phase surface function 8/qq,
and defining p; = (1/qoNaf/ex;)) = af/ax; If we
represent the components of vg by vi, we obtain,
from Eq. (32), the equivalent form (summation con-
vention understood)

H = afpipi- (1-vp)?=0, 61)
from which we obtain
dpi 3ag Vm
= -2 aopjpjai-+ (1 -vkpK pm_ax_i] , (62)
dx;
Ix = 2 fadpi+ (1- vkpk)vi] . (63)

The components of the unit vector # normal to the
wavefront are given by n; = p;/p, where p? = ppi
On making use of this and Eq. (61), we obtain from
Egs. (62) and (63)

dpi , (%30 vV

Ix = =2agp (a—xi + nn _a_il—) (64)
dx;

= 2aqp (agni + vy . (65)

Since we are ultimately interested in the variation of
the direction of §i as the wavefront progresses, we
replace pi by njp in Eq. (64) to get the result

- 2agp (nin; - ;) s-i-j-+ Nm E . (66)
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As we have previously shown, v is the velocity with
which a point on the wavefront travels; we then
necessarily have

dx;

go = Vvitaon;. 67)

On comparing Egs. (65) and (67), we choose A to be
such that 2agp dA = dt. Then Egs. (65) and (67) are
the same, and Eq. (66) becomes

dn; LT A
= (ninj - ;) <a—xj-+ nm—a};> . (68)
Equations (67) and (68) are the desired dif-
ferential equations of the acoustic rays: the x; locate
a point on the ray path, and the n; determine the
orientation of the wavefront surface; each of these
quantities is obtained by integration. From Eq. (68)
we see that the rate at which the rays bend depends
directly on the presence of gradients in the ambient
sound speed ap and (in the case of the atmosphere)
the ambient winds vg. These equations are in the
form given by Ryshov and Shefter,?! and are
equivalent to those derived by Milne.Z5 Gubkin28
derives these equations directly from the basic
hydrodynamic equations without use of the eikonal.
A ray tube is simply a cylindrical surface
generated by the acoustic rays, in which the axis and
walls are locally parallel to v, If Eq. (56) is applied
by means of the divergence theorem to a portion of
such a tube, we see that the energy flux through
any cross section of the tube is a constant, that is,
fEvs - dA is invariant. For tubes of small diameter,
the quantity EvgA is constant; A is the normal cross-
section area of the tube, which does not necessarily
coincide with the wavefront surface. Thus,
knowledge of how this area varies is sufficient to
determine how the amplitude of a pulse changes as
the pulse propagates, once this amplitude is known
at any given place on the tube. This is the basis of
the method of obtaining acoustic intensities in a
moving medium, as given by Ryshov and Shefter,?!
and as exemplified by the work of Thompson29 and
Ugincius3%, a practical extension of this method was
employed by Candel®!in computer calculations.
This conservation approach does not lend itself
easily to calculations that depend on the detailed
shape of the acoustic disturbance, as we will need
for our nonlinear extensions. Instead, we will
use Eq. (46), but in terms of the scalar magnitude of



the perturbation velocity v,. Accordingly, from
Egs. (47) and (55), Eq. (54) becomes
Vn 2
E= 1+-é; PoVS (69)

and the propagation Eq. (46) becomes

v

1
—-]+vs-Vv]+5 V'V

vl’l
+v - Vln[oo(l+To-)] vi=0. (70)

We now put the spatial derivatives in terms of dis-
tance along the ray tube, which we shall denote by s.
Since v, lies along the tube axis, the operator vy - V
becomes v, 3/ds; by applying the divergence theorem
to a small portion of the ray tube, we obtain, if the
tube portion is sufficiently narrow,

at

Vs Vg 3A ?
Ve vs=g5t 135 = Vsps In(VsA) .

amn

In terms of the ray tube axial coordinate, then,
Eq. (70) becomes

avy avy
AT

(72)

1 3 v
+ 5{ $3s In [povsA (l + ;g-)]}w =0.

This is the linear equation of propagation in the
desired one-dimensional form. Here, v is the
magnitude |vg + agh| and v, is the magnitude of v};
thus we are calculating v{ even though its direction
is along ®.

Equations (67), (68), and (72) are in a form that
enables them to be solved quite readily by digital
computer methods: Egs. (67) and (68) are ordinary
differential equations, while Eq. (72) can be put in
the form

dvi I
at_-_i Vsa—s n

e (2]} 03

in the rest frame of the disturbance. Once the ray
paths are calculated, not only can the area A be
found from at least three closely spaced rays, but
the magnitude vscan be determined as well.

NONLINEAR EXTENSIONS

The linear theory we have established so far is
applicable where convective, dissipative, and
otherwise dispersive effects are negligible. In prac-
tice, this would correspond to acoustic propagation
over short distances in a neutral atmosphere. As we
have shown, the ambient fluid has two effects on the
propagating waveform: it amplifies or diminishes its
magnitude, and it determines where it goes by
means of the ray paths. Note that if the disturbance
grows as it propagates, it can still remain acoustic,
i.e., small relative to the ambient fluid. For exam-
ple, a wave travelling in the real atmosphere is
known to increase in magnitude as it encounters
rarefied air; on the other hand the speed of sound is
also increasing, so that the relative strength of the
wave, denoted by v;/ap does not increase as
markedly.

For the situation where the acoustic propaga-
tion extends over long distances, the dissipative and
second-order convective terms that were discarded
will produce a substantial cumulative effect, even in
the case where the disturbance remains acoustic in
magnitude. This is manifested as a change in the
profile of the disturbance. Thus, it is not necessary
that the magnitude of the disturbance be large for
nonlinear behavior to be present. In the remainder
of this paper, we will be concerned specifically with
those nonlinear changes of shape for disturbances
that stay acoustically small. By making this impor-
tant distinction, we are able to retain all the results
that have been developed so far for the linear case.
In particular, the ambient fluid will remain essen-
tially unaffected by the passage of the disturbance,
and the ray tube geometry will still apply. This last



assumption has already been justified by Heller,!”
for the case where nonlinear convection is present,
and shown by Gubkin?® to hold for weak shock
waves. Dissipation for the most part reduces the
amplitude of the disturbance, and this does not con-
flict with the assumption of acoustic smallness.

The consequences of these combined nonlinear
effects have been treated in detail by Lighthill*2 for
planar disturbances, and by Naugol’nykh33 for
spherical disturbances, where the propagation is
into a uniform, viscous, heat-conducting, and
motionless medium. A more recent review of these
matters, including extensions to sound waves of
large amplitude, is contained in the treatise of
Rudenko and Soluyan.34 In this section we shall
draw primarily on the last two references for es-
timating the form of the dissipative terms, after
which we shall treat the second-order convective
terms in a manner similar to that of Lighthill.32

To keep these matters in a manageable form,
we shall initially assume that the ambient fluid is
motionless and uniform. Our plan is to elucidate the
nature of the nonlinear terms, and then carry them
over to the equation for propagation in the in-
homogeneous, moving fluid, by the simple ex-
pedient of employing a local, almost Galilean
transformation. This should not affect the essential
validity of the overall results, since Blokhintsev’s
treatment has already accounted for the effects of
the ambient gradients and flow fields. We are thus
assuming that the nonlinear actions are basically
unaffected by the ambient inhomogeneity and flow.
Such a procedure is clearly inappropriate for finite
amplitude disturbances, i.e., those that are much
larger than acoustic.

The dissipative effects are treated as correc-
tions to what is regarded as an approximately isen-
tropic situation, in agreement with the view that
they become evident only after the propagation has
lasted for a long time. This is done by analyzing the
entropy and momentum losses sustained by the dis-
turbance. Blokhintsev’s Eqgs. (9)—-(11) for a motion-
less, uniform medium, with just the dissipative
terms restored, are

1

stV -vi=0, (79
e Lop=Ltow as)
at pOVPI po voi
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and

9s) K

ETaiaP v VT . (76)
These are the usual equations of linear acoustics;
the last one is the equation of heat flow. Now, since
we are assuming the propagation is approximately
isentropic, we have

T
Tl - Sb_ Pi1., (77)
and also, from Eq. (75),
av] 1
el 70 vpP1 . (78)

We insert Eq. (77) into Eq. (76), take the divergence
of Eq.(78), and eliminate ¥2p; from the result.
Then we obtain

3 x fd 3
T —17,(3%:)5 AV V),

from which we infer that, for linear acoustic distur-
bances,

9

aT
81=-'-1-K—0($)5V'VI . (80)

r

This is easily seen by considering sinusoidal distur-
bances. As a result, the entropy contribution to the
*“perturbative equation of state” Eq. (16) becomes

xk {8 aT
hosy = - - ;f),, (g VYL, (81)

or, by use of standard thermodynamic identities, >

I 1
hos]=-'(c—v—65)xv’v1 B

Next, we consider the equation of state. For
reasons that will be apparent shortly, we carry the

(82)



Taylor expansion represented by Eq. (16) to second
order in py, and obtain

2
1{3ag
p1=hes; + a%pl*‘a(g-) pl. (83)

Taking the gradient, we obtain

2
daj
vp1 = hovs + [a%*' (a,—) P]VPI . (84)

The quantity in brackets can conveniently be re-
garded as an expansion of the square of the local
adiabatic speed of sound in the fluid when the per-
turbation is present, i.e., when p = pg + p). This is
- because for an adiabatic process, a? is essentially a
function only of p, and we may identify the acoustic
increment on a(z) with (Ba(z)/ap)pl. On making this
substitution and using Eq. (82), we obtain the ap-
proximate relation

. 1 1 '
vplzazvp|—<?-—3—)KV(V' Vi), (85)
v *p

which we will need further on.
Finally, we put the viscosity term V&, in stan-
dard vector form, and obtain

Vo= (§‘+-;-17>V(V' vp+aviv. (86)

To the extent that V¥ X (V X v;) is vanishingly
small, which would be true for locally planar distur-
bances (particularly the pulsed wavefront of the
previous section), the grad div and Laplacian
operators can be used interchangeably. Thus, e.g.,

4
V31=(§+-5’7)V(V' vy . 87

We now deal with the nonlinear extensions and
dissipation corrections for the acoustic propaga-
tion. To see what these terms should be, we consider
the full equations for an almost isentropic distur-
bance propagating into a motionless, uniform fluid
in which viscosity and heat conduction are present.
There are no body forces or ambient gradients, and
the momentum Eq. (2) becomes

13

-

Vo (88)

av 1 1
.aT+v-Vv+EVp—;
where v and the gradients are now of the perturba-

tion, i.e., yp = ¥p, VP = V4o, etc. Then
Egs. (85) and (87) can be used in Eq. (88) to obtain

oy a?
a—t'+V'VV+‘p—Vp=5V(V‘V), (89)
where
1| .4 11
5—p0[§'+3ﬂ+x(a—c—p)]. (90)

All dissipative effects of interest have thus been
assembled into the momentum equation; this can be

" regarded as the three-dimensional generalization of

Lighthill’s result.32 Equation (90) describes the
acoustic coefficient of absorption in one of its more
familiar forms.2>32

Let the fluid now be constrained to a long,
narrow tube of variable cross section, and let the
disturbance propagate along the axis of this tube.
The equations of motion for the disturbance are
given by Egs. (1) and (89) applied to the tube. Since
v is along the tube axis, the divergence terms may be
expanded as in Eq. (71); this results in

% % v_ pv A

at+vas+pas__A' s ° 1
v, v, atyp_ .o [a, 9
Vet e 0 [Vas MOV . (D)

where s is the coordinate along the tube, A is its
cross section, and v is the magnitude of the distur-
bance. Unlike the ray tube case, the surfaces of con-
stant phase (or constant disturbance) are, here, nor-
mal to the tube axis. Because we have a uniform am-
bient fluid, Riemann’s method of solution can easily
be applied to these equations, even though they are
inhomogeneous. (Cf. Whitham3% and Lighthill”).
We multiply Eq. (91) by a/p, add and subtract the
result from Eq. (92), to obtain

va dA

3 3
[—5;+(via)5§ Ji:zFIES—-‘.D’ (93)



where D symbolizes the right-hand side of Eq. (92).
The J’s are the Riemann variables

a
Ji = V:I:f;dp ,

and the ambiguous sign symbol indicates how these
equations are to be set up for propagation in the op-
posite directions along the tube.

Now, if, as we stipulated, the dissipation is
small, and if the tube area variation is also small,
then the J, in Eq. (93) may be regarded as approx-
imately invariant as they propagate. To have a dis-
turbance travelling only in the +s direction, we de-
mand that J_ = 0, namely

p
a
V—J‘ de .
£0

Thus J+ = 2v, and our desired equation with the
nonlinear terms is now

99

(95)

av d 1

v v
m +(a+v)£- -7 sglnA +'2-D. (96)

For straight tubes of constant cross section we have
planar propagation, and Eq. (96) reduces to the
form obtained by Lighthill.32 In the acoustic limit,
Eq. (95) gives v = agp)/po, the familiar small am-
plitude relation.

As is well known, the nonlinearity of Eq. (96) is
evident. The total coefficient of av/as gives the speed
at which each part of the disturbance, of magnitude
v, moves; parts with larger values will move faster
because of the (v + a) contribution, and this speed
will be cut back because of the dissipative contribu-
tion. Because these actions do not evenly balance,
the profile of the disturbance will be progressively
distorted as it moves. As Lighthill has shown, 32 the
dissipative effects can prevent a shock from ever
forming. For infinitesimally small disturbances,
Eq. (96) reduces to the small-amplitude acoustic
result,

v

agv 3 1
§=-—2—a—slnA+—D . C2))

v
—a-f+ao 2
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At this point we are ready to consider the main
question of how to incorporate these nonlinear ef-
fects into the ray-tube propagation process. We do
this by determining what the nonlinear flow
(Eqgs. (96) and (97)) looks like when the ambient
fluid is moving. For this purpose, Eq. (72), rewrit-
ten for uniform ambient fluids, may be regarded as
the result of an almost Galilean transformation to a
frame of reference in which the ambient fluid is
moving. Equation (72) becomes

v vy

+ _ VsVl a
at ' Vsas

_-—§°3§ hl[%yﬁ.(}*‘%ﬁ)] , (98)

where we recall that vg = vg + aght and ag is now a
constant. If vg = 0, Eq. (98) reduces to Eq. (97),
apart from the dissipative term. We would therefore
expect Eq. (98) to be the result of applying underly-
ing ambient fluid flow to Eq. (97), provided we
identify the tubes associated with the nonlinear
scenario as acoustic ray tubes in a motionless am-
bient medium.

Now, during the incorporation of nonlinear ef-
fects, the geometry of the situation must be kept in
mind; recall that the ambient flow field tilts the
wavefront normal with respect to the direction of
actual propagation. This is important, because in
the local frame of reference moving with the am-
bient flow, the nonlinear processes will be assumed
to still proceed in the direction perpendicular to the
wavefront. That is, in the moving fluid, the non-
linear extensions will be associated, to a first approx-
imation, with the vector normal ®, in accord with the
approximately Galilean aspect of the shift in the
local frame of reference.

We shall therefore “nonlinearize” Eq. (72) as
follows: the v on the left-hand side is replaced by

vs= |vo+ (a+ V)T (99)

to account for the nonlinear convection; this is
reminiscent of Heller’s result.!” The first occurrence
of vson the right-hand side is replaced by

ve = |vo+ ati| .

(100)

To see this, compare the usage of a, agand (a + v)in
Eqgs. (98), (97), and (96). Insofar as the dissipative



term in Eq. (92) is concerned, we shall ignore the
refinements associated with the fact that 3 InA /as
undergoes subtle changes when carried over to the
moving fluid. Thus, we directly add on the dis-
sipative term. We then obtain our main result,
which is the nonlinearized ray tube propagation
equation

avy 0V
3t ' Vses
1} ~a Vn
= -3 Vs3s In [povsA (l + -—é-a)] Vi
+352 [ 2 A]
503 [Vias In(v1A)] . (10D)

where v;, vs", and ¢ are as given above, and where pg
carries additional information regarding the
nonuniformity of the medium.

For practical acoustic purposes, we could take
v;' = vgand a = ag in the terms on the right-hand
side of Eq. (101); however, vs' must be retained
almost exactly as it is, to account for the nonlinear
convective effects. If we write a = (a - ag) + agin
Egs. (99) and (100), and expand the right-hand side
binomially, we get the acoustically acceptable ap-
proximations

vp+ ap
+( Vs )(a—ao+ vy,

" vp+ ag
vs=vs+(nv )(a-ao).
S

Vg = Vg

(102)

(103)

For small ambient flow the first term in parentheses
is practically unity. It is interesting to notice that the
effect of the ambient flow is to slightly reduce or
enhance the nonlinear terms, depending on whether
the flow is with or against the direction of the
wavefront - normal.

APPLICATION TO A GRAVITATIONALLY
- STRATIFIED MODEL ATMOSPHERE

The real terrestrial atmosphere is gravi-
tationally stratified, and admits of extremely com-
plex motions.? Its composition and properties
change dramatically with geographical location and
altitude, and these, in turn, have periodic variations
that range from the diurnal to the annual.?” From
the point of view of a propagating acoustic pulse,
these time variations are extremely slow. The speed
of sound has a range from about 330 m/s at sea
level to about 700 m/s at F-region ionospheric
heights, and an acoustic pulse will take about 10 to
12 min to cover this vertical distance. The same or-
der of time is also required for a ground-launched
pulse traveling at a low elevation angle to reach
apogee before returning to the ground some 200 to
300 km distant.*® Thus, apart from the phe-
nomenon of ducting,?? the free propagation of an
acoustic pulse has a fairly limited range, as dis-
tinguished from that of acoustic-gravity waves and
other larger scale wave motions that characterize
the atmosphere as a whole.

' Over these durations and distances, the at-
mosphere may be regarded as approximately uni-
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form in the horizontal direction and in a steady
state, and the earth as flat. For purposes of il-
lustrating the theoretical material developed in the
previous section, we shall represent the atmosphere
with the following idealized model: all fluid quan-
tities, physical properties, and horizontal wind
magnitudes and directions are vertically stratified,
i.e., are functions only of the altitude z above the
surface; there are no vertical wind components. The
equation of state is given by the polytropic ideal
fluid, i.e., with constant specific heats. Near the
ionospheric regions and above, this model is not
very good, as the implied assumption of an
isotropic, neutral and continuous fluid begins to
break down. As long as the spatial extent of the dis-
turbance continues to be larger than the molecular
mean free path, and as long as the equilibrium
molecular-interaction processes occur faster than
the acoustic fluid dynamic processes, this model
should be reasonably adequate.

In terms of this model, the ambient fluid
properties are related, through Egs. (6) and (7), by
the familiar hydrostatic condition



1 —
oo VPO = g(2) (104)

since all terms involving V- vg and vg*: ¥ have
vanished. The polytropic equation of state is

%: (v - )e = RT , (105)

where v = cp/cyand R = Cp - Cv. As a consequence,
the entropy function at each point in the at-
mosphere is given by

8(z) = cy In p(z) - cpln p(z) .

In a sense this is an assumption in its own right,
since the real atmosphere has distributed thermal
and chemical sources and sinks.

We remark in passing that this model allows
the ambient fluid to have vortex components, i.e.,
V X v, is not necessarily zero. It is not so obvious
that the acoustic disturbance field can also be
rotational; this is really a consequence of
Blokhintsev’s equations, rather than the choice of
the ambient conditions. From Egs. (47) and (48),
V X v; = VIn{p;/ppq) X v, and unless the distur-
bance propagates specifically along the atmospheric
gradients, it is necessarily rotational, even when
Vo = 0,

The vertical stratification simplifies the
acoustic ray equations enormously. We choose a
Cartesian coordinate system with the z-axis vertical,
and let the indices 1, 2, 3 represent the x, y, and z
directions respectively. The components of the
wavefront normal nj, nj, and n3 are given by
sin 8 cos ¢, sin  sing, and cos 8, respectively, where
6§ and ¢ are the usual spherical polar and azimuthal
angles measured correspondingly from the z- and x-
axes, and the components of the wind velocity vgare
represented as vy, vyand v, In these terms, Eqgs. (67)
and (68) for the model atmosphere reduce to

K = va+agsinfeos d , (107)
dy . .
= vy+agsinfsing , (108)

(106) -

gf—= ag cosf , (109)
and
dd . |30
gt = sin 0 o
) avx | dvy
+ sin #{cos ¢—3-Z-+ sin d’_aZ , (110)

where ag is now the ambient polytropic speed of
sound, given from Eq. (106) by

2. (2 TP

4= (ap)s -

20 (111)

These are also Milne’s2® results; Milne noted the

remarkable fact that these equations predict that the
azimuthal orientation of the wavefront normal
along any given ray path does not change during the
propagation. After all, there are no time derivatives
of ¢ involved.

It is amusing to take note of a mild controversy
that has historically pervaded the literature3® with
respect to Rayleigh’s original investigation of the
refraction of sound by horizontal winds,2* in which
he correctly derives an expression for the wavefront
normal angle, 8, Thompson’s remarks to the
contrary27 notwithstanding. Indeed, Rayleigh’s
result is consistent with Eq. (110). Thompson and
others? are, however, correct in pointing out that
Rayleigh did not distinguish between the direction
of the wave normal and the direction of actual
propagation, in his subsequent work on the matter.

The propagation equation for this model is
likewise simply obtained, by eliminating the explicit
dependence on pg from Eq. (101), and determining
the functional form of a(v) from Eq. (95). Taking
the gradient of ay in Eq. (111), and substituting for
Vpy from Eq. (104), we obtain

Vlnpo=§2g-—vlna(2). (112)
0
On taking the scalar product with vswe get

d ygcosfs 3

5 Inpo= '_g_2_s'a—sl“ a} (113)



where -g cos f; is the component of the downward and this is our model result. Note that the gradients

gravitational acceleration along the direction of of the stratified ambient quantities are given by
propagation, and #;is the polar angle for this direc- 3/8s = cos 653 /az. The ray path and ray tube equa-
tion. tions now depend on just four variable properties of

Since the perturbation in the nonlinear treat- the model atmosphere: the local sound speed ag(z),
ment is assumed to propagate isentropically, it the horizontal wind velocity v(z), the acceleration
follows from Eq. (106) that due to gravity, g(z), and the kinematic viscosity im-

bedded in 4(z).

2 _ A variety of different algebraic forms can be
al= (’a',;L s 3(2)(%6)7 : ’ (114) taken by Eq. (118); its compact simplicity is highly
deceptive, because the notation Vin fis a conve-
nient shorthand for either Vf/f or VIn f/fy, where
fo is a reference constant value. As a useful il-
lustrative example, we consider the form Eq. (118)
would take if there were no ambient winds. Then

and this is the functional form of a(p) required by
the integral in Eq. (95). On carrying out the integra-
tion, we obtain the familiar result

: vy = ag, v, = 0, 6; = 6, and we obtain
a=ag+5-vy, (115)
which is exact. After inserting this into Egs. (102) av, y+1 )
and (103), we have T\t T VYo
v+(v"+ao)7+lv (116) 1 1{v ag aA
= Vs 1 - - Y- 1 _18_ i) _
2 _2v1[1+—§—(a0)][( + )c00 A o5
vpta
vs—vs+( - 0) Tvl 117 1 s R
5 =[5 mwA) . @19
With these substitutions and Eq. (113), Eg. (101)
becomes
The first term in the brackets is essentially a non-
avy , vy linear correction to the exponential growth factor, 36
3t Vs and the left-hand side is in the familiar nonlinear
wave propagation form.
_ 1w Jygcoss @ VsA
-‘Z‘VsVl T— 3 ln[—a-%— 1 +
1.3 L]
+soglignea)] . aw

CONCLUDING REMARKS

The main results of this paper are the ray path as initial value problems by using contemporary
Egs. (67) and (68), and the nonlinear propagation numerical methods; Dubois*® has in fact already set
equation collectively represented in the general case up such a scheme for the model atmosphere, and we
by Egs. (90), (101), (102), and (103). For application will report on this in a future publication.
to the model terrestrial atmosphere, these last These results, although quite general in nature,
would be Eqgs. (90), (116), (117), and (118). In this are nevertheless an asymptotic “high frequency”
form, the equations are quite amenable to solution approximation, and, moreover, are applicable
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primarily to disturbances that are acoustically small
in magnitude. A more proper theory must
necessarily couple the ray path and propagation
equations. This has been done for weak shock
waves (see, e.g., Whithamz), and future work
leading to such a theory could conceivably take
guidance from this area. The work of Friedman,
Kane, and Sigalla’ is a potential example in point.

It is possible to improve the one-dimensional
nonlinear treatment by carrying out Riemann’s
procedure for the case in which the motionless am-
bient fluid is not uniform, and then transforming to
the moving fluid. The difficulty in this process lies in
getting the fluid equations into a Riemannian form
similar to Eqgs. (93) and (94), because the integral in
Eq. (94) is not as easily extracted for this case as it
was for the case of a uniform ambient fluid, and the
entropy state function must now include a de-
pendence on v. We have carried out such a calcula-
tion for the special case of the motionless model at-
mosphere of the previous section, and the results are
as given by Eq. (119), except for minor variations
in the second-order coefficients. That is, the
coefficients of the (vi/ag) terms associated with
vg/ap and dag/dz turned out respectively to be
(vy-1)(y + 3)/4y and (y + 3)/2instead of (v - 1)/2
for both.

We note at this point that to obtain the other
fluid variables from the solution vy of Egs. (101) or
(118), the small-amplitude acoustic relations p; =
povi/ap and p; = poagv) are adequate. If, however,
the disturbance becomes large, then the full fluid

variables p and p should be expanded in powers of
vi/ap with the help of Eq. (115) and the adiabatic
relationship between p and p. These expansions are
easy to do, since, e.g., p/po= 1+ p1/po

A quick survey of recent literature reveals other
potential areas to which the nonlinear methods of
this paper could profitably be extended. For exam-
ple, ray equations have already been used to deter-
mine the paths taken by sound waves in well-
defined vortices, as given by the work of Georges41
and Broadbent*? Blythe*? has investigated the use
of Riemann invariants in gases with vibrational
relaxation rates comparable to those of the
hydrodynamic processes; Broer* has developed the
method of characteristics for a chemically reacting
gas; and Panchev and Pancheva® have equations
corresponding to the propagation of sound pulses in
electrically conducting terrestrial atmospheres, i.e.,
the ionosphere. Whitham®® gives a comprehensive
treatment of such extensions in the case of
magnetohydrodynamic wave motions. While shock
wave ray and propagation methods are well es-
tablished for some of these areas,” the “shockless”
techniques appear not to have been as well
developed.

In conclusion, we note that the methods of this
paper could conceivably be extended to time-
varying media. The discussions by Hayes23 and
Engc:lke26 suggest that Blokhintsev’'s work and
Milne’s ray path development are also suitable for
fluids having unsteady ambient motions.
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